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Summary 
 
Optimization is often daunting to engineers and scientists because it involves complicated 
derivative calculations and the software is hard to use. We have developed robust derivative-
free methods and software that are easy to use, run efficiently in parallel (even when the 
scientist’s code is not parallel), and are mathematically proven to converge. 
 
Our focus is on solving real-world 
optimization problems from science and 
engineering – the types of problems that are 
based on complicated (perhaps even 
stochastic) simulations that are expensive 
and do not have any derivative information.  
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For example, we are currently collaborating 
on a problem in nuclear safety studies where 
we want to determine the worst-case damage 
if a component is dropped. Each “function 
evaluation” requires meshing, a parallel 
simulation (that takes 1-15 hours on ten 
processors of an advanced parallel 
supercomputer), and analysis of the 
simulation output to determine the final 
objective value, i.e., the damage. 
 
Few optimization methods or codes can 
solve such problems and fewer still can do 
so efficiently. We have designed a parallel 
and asynchronous derivative-free 
optimization method that reliably and 
robustly solves these types of optimization 
problems. Allowing different simulations to 
be run independently and asynchronously is 
the key to our success. Much time is wasted 
on supercomputers for synchronization, but 
our methods fix these problems by more 
efficiently making use of available 

resources. Over and over again, our methods 
have proven to be faster than synchronous 
implementations; see Figure 1. 
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Figure 1. Numerical results on 3 problems; 
our asynchronous method (left) is faster 
than synchronous (right). Orange bars show 
actual work time and yellow shows idle time. 
Green triangles indicate calls to the 
simulator; the asynchronous method makes 
more calls but is still faster due to its 
efficiency. 
 
This year, we have extended our methods to 
handle linear and nonlinear constraints. This 
is a major advancement and means that 
more complicated nonlinear programming 
problems can now be solved. Moreover, our 
convergence theory proves that these 



 

methods converge to a constrained 
stationary point – i.e., a true mathematical 
solution that is as good as would be 
achieved using derivative-based methods (if 
that were an option). 
 
Because these methods are easy to use and 
robust, they are proving useful in a wide 
variety of scientific domains. Published 
examples of the use of APPSPACK include 
parameter estimation for thermal design, 
microfluidics channel design, forging 
process design for structure strength, 
transmembrane protein structure prediction, 
optimal pump placement and rate 
calculation for groundwater flow, fitting 
statistical models for image processing, and 
optimal control of a fed-batch fermentation 
process. Our codes have even found their 
way into the computer and social sciences, 
having recently been used for parameter 
tuning for support vector machines and in 
social dynamics modeling. 
 
Our methods are implemented in the code 
APPSPACK, which is freely downloadable 
from http://software.sandia.gov/appspack 
under the terms of the GNU L-GPL license. 
Version 5.0 was released on June 30, 2006 
and now supports linear equality and 
inequality constraints. APPSPACK runs in 
parallel using MPI (see Figure 2), and it 
interfaces with the simulation via file I/O, 
meaning that the simulation can be written 
any language. 
 
In the past year, one paper appeared in the 
SIAM Journal on Optimization, another was 
accepted for future publication in the same 
journal, a third was accepted to the ACM 
Transactions on Mathematical Software, 
and a fourth was submitted to the SIAM 
Journal on Scientific Computing. We are 
active in the community, presenting invited 
lectures at scientific meetings. 
 

 
Figure 2: An illustration of APPSPACK 
running in parallel on 3 processors. 
 
We will continue to work on the 
development of methods to handle problems 
with nonlinear constraints. This involves 
solving a sequence of linearly-constrained 
subproblems. We are developing 
convergence theory as well as implementing 
and testing the methods.  We will also 
further our examination of why these 
methods behave so well in the presence of 
noise even though the convergence theory 
does not account for it.  To do this, we are 
developing new convergence theory that 
explains this good behavior and offers some 
clues on to how to best select algorithmic 
parameters in the presences of noise. 
 
Our work with applications has been aided 
by our colleagues at Sandia National 
Laboratories. Our theoretical work has been 
in collaboration with Prof. Virginia Torczon 
and Prof. R. Michael Lewis at the College of 
William and Mary in Virginia, as well as 
Prof. Richard Byrd from the University of 
Colorado at Boulder. The development of 
the APPSPACK software has also been 
partly supported by the NNSA. 
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